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ABSTRACT

This report introduces new research on the generalised Marcum Q-Function,
and in particular, the probability of detection of a number of incoherently inte-
grated signals in a Gaussian clutter and noise environment. A new probabilistic
association is derived, linking this detection probability with a probability as-
sociated with two independent Poisson random variables. Additionally, it is
shown that this detection probability is the solution to two stochastic Volterra
integral equations. This results in a means of obtaining estimates of this detec-
tion probability. Specifically, lower and upper bounds are derived using these
representations, and the bounds are compared with known results. As a by-
product of this work a new useful expression for the differences in distributions
of independent Poissons random variables is obtained.
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Stochastic Representations of the Marcum Q-Function and
Associated Radar Detection Probabilities

EXECUTIVE SUMMARY

The work presented here is a consequence of the ongoing long range research associated
with radar detection issues that arose out of the task AIR 01/217, which has now been
succeeded by AIR 04/216. The purpose of this task is to provide the Royal Australian Air
Force with technical advice on the performance of the Elta EL/M-2022 maritime radar.
The latter radar is used in the AP-3C Orion fleet. Key performance measures of a radar
include probabilities of false alarm and detection. Earlier work by the author focused
on how Monte Carlo methods could be used to estimate such quantities. The research
found in this report arose out of the need to find an efficient Monte Carlo estimator for
a single pulse probability of detection of a target in Gaussian clutter and noise. This
was a component in a two-tiered Monte Carlo estimator for a binary integrated detection
probability. A new association was discovered between the pulse detection probability and
a pair of independent Poisson random variables. The mathematics behind this discovery
is presented here. Furthermore, it turns out that this result can be extended to the case
of a series of incoherently integrated pulses. Consequently, this provides a new twist on
the generalised Marcum Q-Function. The latter is an important function in the study
of radar and communications, and hence new representations for it are of interest to the
wider radar community.

In addition to presenting this new result, it is shown that this detection probability is the
solution to two stochastic Volterra integral equations of the second kind. These represen-
tations for the detection probability suggest ways in which bounds can be obtained. The
importance of bounds on such probabilities is that they indicate the minimum and maxi-
mum performance levels of a radar detection scheme. We construct new lower and upper
bounds on a specific detection probability, and compare them with well-known results
from the signal processing literature.
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Glossary

IN Natural numbers {0,1,2,...}.
IP Probability.

IE Statistical expectation.

1 ifz e A;

I Indicator function: Ilj,c 4 = { 0 otherwise

:= Defined to be.
¢ Signal to noise ratio (SNR).

7 Detection threshold.

1 /7 ‘ .
I,(z) Modified Bessel function of order n: I,(x) = —/ (—ie~®)remsind gy,

2 J_x

1 o0 _ z2+a2
Qn(a, B) Generalised Marcum Q-Function: Qn(«,8) = — / x"e ( 2 )In,l(azz:)dm.
o B
pn(s,7) Detection probability of n incoherently integrated signals: p, (s, 7) = Qn(v/2ng, V/27).
p(s,7) = pi(s, 7).
2 o0 2
Erfc(z) Complementary error function: Erfc(z) = — / e Vdt.
z
a A'b Minimum of ¢ and b.

a Vb Maximum of ¢ and b.

4 Equality in distribution: X LY is equivalent to P(X € A) =P(Y € A) for all sets A.
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Po()\) Poisson Distribution with mean A > 0: if X 4 Po()), then IP(X = j) = ei&‘j, for
all j € IN.

Po(M\){A} Cumulative Poisson probability on set A C IN: Po(A\){A} = ZjeA %

Bin(n,p) Binomial Distribution with parameters n € IN and p € [0,1]: if X 4 Bin(n,p),
then P(X = j) = <?> (1 —p)"Jp?, for j € {0,1,...,n}.

R(a, 3) Uniform (or rectangular) distribution on the interval [a, 8] (o < (): If X 4
R(a, ), then IP(X < z) = o forze [, B].
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1 Preliminaries

1.1 Background

The single pulse probability of detection, for a constant target in Gaussian clutter and
noise, has been the subject of much investigation in foundational studies in the mathemat-
ical analysis of radar detectors. Expressions for such probabilities first appeared in [Rice
1944 and 1945, Marcum 1960 and Di Franco and Rubin 1968], and more recently, [Lev-
anon 1988 and Minkler and Minkler 1990] contain detailed analyses deriving this classical
detection probability.

Under a Neyman-Pearson regime, this probability of detection appears as an integral in-
volving a modified Bessel function of order zero. This integral does not have a closed
analytic form. As it appears in a number of modelling applications, such as binary in-
tegration [Shnidman 1998], a number of authors have examined ways of estimating it
efficiently. [Shnidman 1995, 1998 and 2002] applied a Maclaurin series expansion to the
Bessel function, and consequently obtains a number of useful results. Simulation method-
ology can also be used to estimate this pulse probability of detection. In [Weinberg and
Kyprianou 2005], Monte Carlo methods are used to estimate it.

As a result of searching for an efficient estimator for this pulse detection probability, a new
probabilistic expression for it has been obtained. It can be shown [Weinberg and Kyprianou
2005] that the detection probability is identical to a comparison of two independent Poisson
random variables. One is centred on the average signal strength, while the other is centred
on a normalised detection threshold.

1.2 Probability of Detection in Gaussian Clutter

The following is included for completeness, and to provide a context for the work to be
discussed in subsequent sections, and is based upon the developments in [Levanon 1988].
Consider a radar operating in Gaussian clutter and noise, from which a single pulse is
transmitted. The transmitted signal is a sine wave with period ¢ and frequency w. The
returned signal will be assumed to be a phase shifted version of the original, with the
addition of interference. For modelling simplicity, we do not differentiate between clutter
and noise, nor any other environmental factors that may distort the signal. We will
just assume the total interference is a Gaussian random variable. The returned signal is
passed to a narrow bandpass filter, with centre frequency w. We assume this filter has
a rectangular response with bandwidth fp. Then assuming that fp > %, the returned
signal is

s(t) = Acos(wt — 0) = acos(wt) + bsin(wt), (1)

where 6 = arctan (%) is the phase shift of the signal, and the amplitude is A = Va2 + b2.
We assume that a and b, and consequently A, are deterministic, and that 8 is uniformly
distributed on the interval [0, 27).
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When Gaussian noise is passed through a narrow bandpass filter, the output can be written
as
n(t) = X (t) cos(wt) + Y (¢) sin(wt), (2)

where X (t) and Y (¢) are both independent and identically distributed Gaussian random
variables, with zero mean and variance o?. By combining both (1) and (2), the radar
signal return, in additive Gaussian noise, at the detector is

() = s(t)+n(t)
= (Acosf+ X (t))cos(wt) + (Asinb + Y (t)) sin(wt)
= (a+ X(t))cos(wt) + (b+ Y (¢))sin(wt) (3)

= R(t) cos(wt — ®(t)),

where

R(t) = \/(a + X ()24 (b+Y(t))? and ®(¢) = arctan {b + Y(t)]

a+ X(t)]"
It can be shown that the joint density of (R, ®) is

(5)

r2 +a? + b? — 2racos ¢ — 2rbsin¢]

r
f(R,‘P) (7", ¢’0) = 202 exXp 202

where o is as defined previously. To obtain the marginal probability density function (pdf)
of the amplitude R(t), we integrate the density (5) over all phases to obtain

2T
fr(r|0) = A fr,a) (1, 810)
T r2 4+ A2 rA
= ;exp —?‘2 Iy [?:|a (6)

where Ij, the modified Bessel function, of the first kind, of order zero, is defined to be

2m ™
To(z) = / exp(z cos(0 — 1))df = — / emeostp. (7)
0 21 J_x
Note that (6) does not depend on 6, so that fr(r|0) = fr(r). We are now in a position
where we can specify the probabilities of false alarm and detection for a single pulse. The
classical approach to radar detection is to declare a target present when some statistic
of the returned signal exceeds some pre-defined threshold level. A common choice in the
literature is for the amplitude (R(t)) to exceed a mean level [see Levanon 1988]. We
suppose this threshold is p,. Observe that, in view of (6), in the case where there is no
signal present in the return, so that A = 0, the pdf of the amplitude is Rayleigh distributed
with parameter o. The probability of false alarm is the probability of declaring a target
present when there is only noise. Hence, under the Neyman-Pearson criterion,

oo 2
Pra = / %exp {—%} dr = exp [—ﬁ] . (8)
_ o 20 o
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The probability of detection is the probability of correctly declaring a target present. Un-
der the Neyman-Pearson Criterion, for the case of a band-limited signal (1) in bandlimited
Gaussian noise, it is given by the integral

< r
IPD:/ —5 €xp
o

T

202

I [’;—ﬂ dr, )
where the SNR is given by ¢ = % [see Levanon 1988]. The larger the signal to noise
strength, the more likely we are to detect the target. In order to emphasize the dependence
of (9) on the SNR ¢ and the threshold 7, we will write the detection probability as p(s, 7).
By a change of variables » = v/202v, and using the definition of ¢, it can be shown that
(9) is equivalent to

P = [~ n @Ry = pls.7). (10)

where 7 = % The detection probability (10) is the classical expression that can be found
in [Levanon 1988] and [Minkler and Minkler 1990].

1.3 The Marcum Q-Function

The Marcum Q-Function arises in communications and radar signal processing problems.
It has a long history in the study of target detection by pulsed radars [Marcum 1950,
Marcum 1960 and Marcum and Swerling 1960]. As pointed out in [Simon 1998 and
Simon and Alouini 2003], it occurs in performance analysis related to partially coherent,
differentiably coherent and noncoherent communications. Performance measures where
the Q-Function arise are error probabilities in transmission over fading channels, and
detection probability for code acquisition in direct sequence code division multiple access
systems [Corazza and Ferrari 2002]. A specific example can be found in [Chiani 1999,
who applies the Q-Function to performance evaluation of noncoherent and differentiably
coherent detection of digital modulation over Nakagami fading channels. In radar signal
processing, the Q-Function appears as a detection probability. In particular, it is related
to the probability of detection on 7 incoherently integrated received signals, in a Gaussian
clutter and noise environment [Helstrom 1968, Nuttall 1975 and Shnidman 1989].

The standard Marcum Q-Function is defined by the integral

Q(o, B) := /ﬂoo xei(wzga

To see the connection (11) has to (10), introduce the transformation o = /25 and g =

T

v/27. Then by introducing the transformation v = 72 in integral (11), we obtain

Q(O‘MB) = Q(\/i’ \/Z)

2

)Io(aac)dm. (11)

oo 22
= e° /\/_ re” 7 In(v2¢x)dx
2T

= e /OO e " 1p(2+/sv)dv. (12)



DSTO-RR-0304

Hence it follows that the single pulse probability of detection p(s, 7) = Q(v/25, v/27).

One of the issues associated with (11), and in particular, the generalised Marcum Q-
Function to be introduced in Section 2, is how to estimate it well. Also of interest is
obtaining upper and lower bounds on it. A number of authors have investigated these
problems, including [Chiani 1999, Corazza and Ferrari 2002, Simon 1998, Simon and
Alouini 2003 and Shnidman 1989].

1.4 Contributions of this Report

This report outlines new mathematical research into the detection probability (10), and
its generalisation to n incoherently integrated pulses in Gaussian clutter. Specifically,
[Shnidman 1989] does not identify a probabilistic interpretation to this detection prob-
ability, which can be used as a mechanism for generating a Monte Carlo estimator for
the generalised Marcum Q-Function. A new interpretation of the detection probability,
in Gaussian clutter and noise, of a number of incoherently integrated received signals is
explored. In particular, it will be shown that this detection probability is equivalent to a
probability associated with two independent Poisson variables. This generalises the case
employed in [Weinberg and Kyprianou 2005].

In addition, some new interesting properties of this detection probability are explored
mathematically. It is shown that the generalised detection probability under investigation
is the solution to two stochastic Volterra integral equation of the second kind [Davis 1962
and Tricomi 1957]. This leads to useful representations that facilitate the construction
of bounds on the detection probability, and consequently, the Marcum Q-Function. We
will investigate the performance of some new bounds on the single pulse probability of
detection (10).



DSTO-RR~0304

2 Marcum’s Q-Function and a Poisson
Connection

2.1 Generalised Marcum Q-Function

The generalised Marcum Q-Function of order n € IN [Corazza and Ferrari 2002, Nuttall
1975, Simon 1998 and Simon and Alouini 2003] is defined by the integral

Qn(a, B) L /: :B”e_(#)ln_l(aaz)dzn, (13)

= an—l

where I;(z) is the modified Bessel function, of the first kind, of order k£ [Bowman 1958],
which can be defined by the integral formula

1 s i . 1 s
Ti(z) = — / (—ie—)ke—wsmbgy — L / 705 cos(k6)db, (14)
2 J_n 7 Jo
where 2 = —1. We will be exploring this function throughout this report. In particular, we

are interested in it because of its connection to radar detection probabilities. As pointed
out in [Shnidman 1989], the detection probability of n incoherently integrated received
signals in a Gaussian noise and clutter environment is given by

(n=1)
14

pien) = [ () T eIy, (15)

ng
when using a quadratic detector via the Neyman-Pearson Criterion.

In [Weinberg and Kyprianou 2005], (15) was investigated in the case where n = 1. It was
shown that (15) for n = 1 is identical to the probability that one Poisson random variable,
representing a threshold variable, is less than or equal to another Poisson, representing
the SNR. We will show that this result can be generalised to (15).

It can be shown [Helstrom 1968, Nuttall 1975 and Shnidman 1989] that (15) is related to
(13) through

pn(§, T) - Qn(\/ﬁ, \/Z) (16)

Hence, any new expression obtained for either one of (13) and (15) can be applied to the
other, through (16).

2.2 The Poisson Connection

We now derive a new probabilistic expression for (15). The following mathematics is
included for completeness, and is based upon the analysis in [Shnidman 1989]. Recall that
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the Bessel function of the first kind of order n € IN, denoted J,,(x), has a series expansion
in terms of Gamma functions

(=D* (5)"™

Inl Zk:‘f‘(n—f—k—i—l)

(17)

[see Bowman 1958 and Tsypkin and Tsypkin 1988] and the modified Bessel function I, (x)
of the first kind of order n € IN is related to J,(x) through I,,(z) = (—i)"J,(iz). Hence,
applying this to (17), and using the fact that we will only be considering integral n, it is
not difficult to construct the power series

i xn+2k:
I(x) = o : (18)
= 2"k (n + k)!
Hence, applying (18), to I,,—1(2,/vng), the detection probability (15) becomes
(\/V—ng)n—l—i—%
¢, T) = VeV —du
* 1+k
= e gy, 19
Zk'n—l—lrk)/ ©v g (19)
It can be shown that
(o0} o
/ e VT ItR gy = e_T/ eV (v+ 1)y, (20)
T 0
An application of a binomial expansion to (v + 7)""1*%, transforms (20) to
| ot ay =y (=1 ki (21)
0 0 J!
j
Hence, applying (21) to (19), we arrive at the double series expansion
0o kn—1+k 5
_ (ng) 77
puls,) =TS = Y o (#2)
k=0 j=0

The expansion (22) is not new to radar, but can be found in a number of references, such as
[Shnidman 1989]. The following interpretation has not been identified previously. Define

a pair of independent random variables (R;(ng),Ra(7)) 4 (Po(ng),Po(7)). We observe
that (22) can be written in the form

—nc(ng)k n—1+k eI

pulsr) = Y SR e

1
k=0 : = I

= Y PIRi(n) = HPRa(r) < — 1+ K]
k=0

= PRa(7) <n—1+Ry(ng)). (23)
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This result complements the corresponding result for n = 1 in [Weinberg and Kyprianou
2005).

From a radar analysis point of view, (23) is an unexpected result. We can explain this
result in a heuristic manner as follows. We can think of the random variable n— 1+ (ng)
as representing the signal to noise ratio. Similarly, No(7) is a random variable representing
the detection threshold. If we condition on the threshold variable, then (23) is counting
the number of exceedences of a randomised threshold level. The larger the SNR ¢, the
more exceedences of the threshold, since ¢ is also the mean value of the associated Poisson
distribution. Also, Poisson variables are models for “rare” events, and detections, in some
circumstances such as low SNR, can be thought of as such. Hence the form of (23) is
intuitive because it is counting the number of exceedences of a randomised threshold,
using a model for rare events.

We can also apply (23) to the generalised Marcum Q-Function. Note that, with reference
to (16), (23) implies that

62 012
Qn(a, ) =TP (Nz <7> <n—1+%; <7>> (24)

Both (23) and (24) lead to very simple Monte Carlo estimators for these respective func-
tions.
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3 Stochastic Representation

This Section is concerned with the derivation of a further stochastic representation of the
detection probability (15). In order to derive this result, we require an expression for the
distributional differences between independent Poisson random variables. Using Stein’s
method, a new integral expression for this is obtained, and is applied to (23).

3.1 Stein’s Method for Poisson Approximation

Stein’s method [Barbour et. al. 1992, Chen 1975 and Stein 1972] is a general scheme that
enables one to obtain estimates of the rate of convergence of probability distributions.
[Weinberg 2005] contains a detailed description of the method, its history and application.
Our application of it is to construct an expression measuring the distributional difference
between two independent Poisson random variables. The application of such an expression
is to the construction of further stochastic representations of (23). In this Subsection we
present a concise outline of Stein’s method for Poisson approximation. The reader is
advised to consult [Weinberg 2005] for a more comprehensive discussion.

The key idea behind Stein’s method for Poisson approximation is to find a solution to the
Stein equation

Ag(j+1) = jg(j) = f(j) —Po(N)f, (25)
where f(j) = Ijjcq, A > 0 and

Lo — 1 ifjeA;
€Al =) 0 otherwise.

If (25) is well defined, then for a random variable W with support the nonnegative integers,
EMNW +1)—-Wg(W)]=P(W € A) — Po(\){A}. (26)

Hence, to measure how well the distribution of W is approximated by that of a Poisson
random variable, we need to bound or estimate the left hand side of (26).

The probabilistic approach to Stein’s method [Barbour et. al. 1992] relates (25) to the
generator of an immigration-death process, with immigration rate A, and unit per capita
death rate [Ross 1983]. The generator of such a Markov process is

Ah(j) = Ah(G + 1) = h(3)] = j[h(5) — h(G — 1)]. (27)

Here, we have written g(j + 1) = h(j + 1) — h(j). The probabilistic form of the Stein
equation (25) is
Ah(j) = f(j) —Po(M) f, (28)
and has solution
hij) == [ E[f(Z;) - Po())fldt, (29)
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where Z;(t) is the immigration-death process, starting with j individuals [see Weinberg
2005]. The idea, in this context, is to estimate the distributional differences in (28) by
estimating the expectation of the generator (27), using properties of the function (29) and
Markov process theory.

In the next Subsection, we apply this to estimate the difference in distribution of two
independent Poisson random variables.

3.2 Differences of Poisson Distributions

We require an expression for the difference in distribution of W 4 Po(u) and V 4 Po()).
Hence, we simplify (26). Note that

Ewgv) — Y2

= -1
— uElg(W + 1)) (30)
Hence, applying (30) to (26), it follows that
EMg(W +1) = Wg(W)] = (A = w)E[g(W +1)]. (31)

Consequently, we need to estimate the expectation IE[g(WW + 1)]. It is useful to now use
the probabilistic interpretation to Stein’s method, in order to simplify (31). Hence, by
applying (29), and writing g(j + 1) = h(j + 1) — h(j),

ol +1) == [ Bl (Z3a(0) = 1250 (32)

As in [Barbour et. al. 1992 and Lindvall 1992], we couple the two processes in (32) as
follows. The process Zj;1(t) evolves as Z;(t) with the addition of an extra individual, with
independent Exponentially distributed lifetime. Hence Z;11(t) = Z;(t) + Lj¢~), where ( is
an independent Exponential random variable with mean 1. Then after ¢ > (, the processes
couple together. It thus follows that

9i+1) = —E [ Teglf(Z00)+ 1) - £ )

_ _/0 eMELf(Z;(t) + 1) — £(Z;(1)))dt. (33)

In view of (31) and (33), what we now require is the distribution of the immigration-death
process Z;(t) when j is a Poisson random variable with mean p. The following Lemma
gives the required result:

Lemma 3.1 For the immigration-death process Z;(t), if W 4 Po(u), then Zy(t) 4
Po(A+ (u— Ne™).
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Proof:

Let Px(s) = IE[sX] be the probability generating function of the random variable X. It
can be shown that if X < Po(v), then Px(s) = e™*(17%). Also, if Y/ 4 Bin(n,p), then
Py (s) = (1—p+ps)™. The immigration-death process Z;(t) can be decomposed into a sum
of two independent random variables. Namely, it can be shown that Z;(t) = X;(t)+ Zo(t),

where X(t) 4 Bin(j,e™?) and Zy(t) 4 Po(\(1 — e ")) [see Barbour et. al., 1992]. By
using the independence of these two variables, and by conditioning on W, it follows that
Pryw = B[V ()] = BE[O[W]]
= EE[ | WIE[s?" W]
= IE[Pxy, 1) (8)]Pzo(1) (5)

_ E[(l _ et + e—tS)W]e—)\(l—e_t)(l—s)

e—P\+(#—>\)6_t](1—S)’
implying the desired result. O

Since we are interested in cumulative distribution functions, we make the choice of A =
{0,1,...,k}, for some k € IN. This is equivalent to the choice of f(j) = LI[j < k]. Let
X (t) = Zw(t). Then it follows that

ElgW+1] = - [" IO +1< )~ POXE) < k)lde
_ /0 T e P(X (1) = k)dt. (34)

Lemma 3.1 implies the point probabilities of X (¢) are given by

P(X (1) = ) = el A N (35)

Applying (35) to (34), and making the transformation v = X + (u — A)e™*, and without
loss of generality, considering A\ > u, we obtain

1 A e_l’yk
Blo(W + 1) = 3 /M . (36)
An application of (36) to (31) results in
A e—vyk
Po(u)f ~ Po(\)f = [ “dv (37)
u !
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Hence (37) expresses the differences in Poisson cumulative probability distributions as an
integral over their respective means, of a Poisson distribution function whose mean is the
integration variable. The following subsection will apply (37) to construct an alternative
expression for (23).

Note that if we introduce a random variable ©(u, \) 4 R(p, A), and an independent
Poisson random variable X(v) 4 Po(v), then it follows that (37) is equivalent to

Po(p)f —Po(A)f = (A = w)PR(O(A, p)) = K. (38)

The random variable R(O(\, 1)) in (38), a Poisson with a random mean, is called a mixed
Poisson distribution.

3.3 Stochastic Representation I

We are now in a position to derive new expressions for the detection probability (23).
It is necessary to introduce a number of random variables. Let N;(ng) £ Po(ng) and
No(7) 4 Po(7) be the two independent Poisson random variables in the representation
(23). Introduce random variables R3(<) 4 Po(s), Ny(v) 4 Po(v) and ©(r,5) 4 R(T A
6,7 V). We assume that both N;(n¢) and N3(¢) are independent, and when n = 1, it
is assumed they are independent copies of each other [Lindvall 1992]. Additionally, it is
assumed that N;(ng), N4(v) and O(7,¢) are pairwise independent.

Then by conditioning on ¥ (ng),

pn(s,7) = PRo(7) <n— 1+ Ry(ng)]

= Y PIRi(ne) = HPRa(r) < — 1+ K]
k=0

S PR () = K <]P[N2(T) <n 1+ - PRy <n—1+ k])
k=0

+ Y PRy(ng) = kP[R3(s) <n— 14kl (39)
k=0
Since, by construction, X;(n¢) and N3(¢) are independent and Poisson distributed, we have
> PRy (ng) = kPRs(s) <n— 14k = P[R3(s) <n—1+Ri(ng)]
k=0

= puls,9), (40)

where we have utilised the Poisson expression (23) for the detection probability (15). Also,
with an application of the Poisson difference equation (37), we have

PRo(7) <n—1+k — PN3(c)<n—1+Fk]

11
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1S e*”y”*H‘k
L [,
r k!

_ /glp[m(y) —n— 1+ kldv. (41)

Consequently, by applying (41) and using the fact that X;(n¢) and R4(v) are independent,
ZIP[Nl(ng) = k] <]P[N2(7') <n—1+4kl-PR3(c)<n—-1+ k])
k=0

_ / TPR(r) = 1 — 1+ Ry (ng)]dv. (42)
Finally, combining (40) and (42), (39) becomes
pulss7) = puls ) + [ PIRu(v) =0 — 1+ R )] (43)

This gives a new expression for the detection probability (15). It shows that the latter is
equal to the same detection probability, where the threshold is equal to the SNR, plus or
minus a discrepancy factor that depends on the difference between 7 and .

It is interesting to note that the integrand in (43) is closely related to the detection
probability p,(s,v) = P[Ry(v) < n — 14 Ny(ng)]. In fact, it is obvious that IP[R4(v) =
n— 14+ Ni(ng)] = pnls,v) — PRy(r) < n — 1+ Ny(ng)]. Hence, the integrand is a
nonlinear function of p,(s,v). This suggests that the represention (43) is a nonlinear
integral equation of p,(s,v), as a function of its second independent variable, namely v.

As pointed out in [Davis 1962 and Tricomi 1957], a function f(z), defined on a suitable
domain, is the solution to a nonlinear Volterra integral equation if it satisfies

fla) = fla0)+ [ Flt, f()dt, (44)

where F' is nonlinear. In the case of Volterra integral equations of the first and second
kind, it is assumed that the function F' is a product of the function f and a kernel K. We
illustrate how (43) is of the form (44).

Write the integrand in (43) as
IP[N4(V> =n—1+ Nl(ng” = Pn(% V)Kn(ga V)? (45)
where the kernel K, (s, v) is

PRy (v) =1 — 1+ Ry (ng)]

Kn(gv V) = ]P[NAL(V) <n-—1+ Nl(ng)] ‘

(46)

Consider ¢ (and n) fixed, and choose f(z) = pn(s,z), Flz, f(z)] = —f(2)Ky(s,z) and
xg = ¢. Then (43) is exactly of the form (44), as a function of the threshold, namely
x=T.
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It is worth noting that a function f satisfying the integral equation (44) can be esti-
mated through a Picard iteration scheme [Giles 1987]. One considers the functional series
{fm,m € IN} with fo(z) = f(zo) and f,,(x) defined recursively through

() = Flao) + [ Flt, for(8)]dt. (47)

There are existence and uniqueness theorems, which give conditions on F' to guaran-
tee a reasonable approximation is obtained [Giles 1987 and Tricomi 1957]. In principle,
one could apply the scheme (47) to (43) to obtain estimates of the detection probability
pn(s, 7). In addition, it may be possible to use properties of the solution to Volterra inte-
gral equations to derive new bounds on the Marcum Q-function. The validity and merit
of thes